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Degeneracy of energy levels in a Maslov-quantized 
perturbed 1:l resonant oscillator. A quantum counterpart 
of a HamiItonian pitchfork bifurcation 

Yoshio Uwano 
Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606-01. Japan 

Received 7 lune 1994, in final form 7 December 1994 

Abstract. It is widely bow". in classical lheory, that nonlinear Hamiltonian systems 
depending on several paramekn often exhibit bifurcation in their trajectories against the changes 
in the panmeters. A Hamiltonian pitchfork bifurcation in the oscillator's periodic trajectories 
is a typical example. In this article, to seek a quantum counterpart of that bifurcation, the 
Maslov quantization is applied to a perturbed 1:l resonant oscillator in the Birkhoff-Oustavson 
normal form with two parameters. By~using-a geometric method the degeneracy of energy 
levels is found to be taken as a quantum wunterpart to that bifurcation. The bifurcation set 
for the Hamiltonian pitchfork bifwation in classical theory is viewed as the classical limit of a 
'bihuration set' for the degeneracy of energy levels in quantum theory. 

1. Introduction 

For many years much attention has been paid to the quantum theory of nonlinear 
dynamical systems. By applying the 'semiclassical quantization procedure, for instance, 
to Hamiltonians expressed in the Bukhoff-Gustavson normal form, various problems are 
successfully discussed; for example, the Hhon-Heiles system ( S w i m  and Delos 1979), 
the diamagnetic Kepler problem (Kuwata et al 1990), etc. In a previous article (Uwano 
1989) a quantum study was made for a normal form approximation to the one-parameter 
HBnon-Heiles Hamiltonian: a degeneracy of energy levels and a 'bifurcation' in the density 
of eigenfunctions were found to occur at the very parameter value for which the classical 
system exhibits a bifurcation in its periodic trajectories. In view of this it is plausible to 
expect that there is a reIation between a bifurcation in periodic trajectories in a classical 
system and a degeneracy of energy levels in the associated quantum system. The aim ofthis 
paper is to investigate their relation in the case of a perturbed 1:l resonant oscillator in the 
normal form. A close relation between a Hamiltonian pitchfork bifurcation will be found in 
certain periodic trajectories in the classical system and a degeneracy of energy levels in the 
Maslov-quantized system. It is shown, indeed, that the Hamiltonian pitchfork bifurcation 
set for periodic trajectories coincides with the classical limit of a 'bifurcation' set for the 
degeneracy of energy levels. The perturbed 1:l resonant oscillator to be dealt with in this 
paper is defined to be a Hamiltonian system (R2 x R2, d&, He), where (R2 x R2, d&) is a 
phase space with the canonical I-form, 

60 = p T  dq = pi d q l f  pz dqz 
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expressed in the Cartesian coordinates, (4, p )  E R2 x R2, and Ha is the Hamiltonian given 
by 

H, = J + O L ~ J L ~  + $ u ~ L :  (a1 > 0, a2 > 0) ( 2 4  
with 

2 

J = f + 4;) Ll =4142+PIP2 
j = l  

L2 = 41P2 - 42Pl L3 = +(P: + 412) --&4 + 422). 
The a in H, are parameters taking their values in the region 

P = [a = ((11, az) E R21~l > 0, > 01. (3) 
This Hamiltonian system can be regarded as a perturbed system for the 1:l resonant 
harmonic oscillator, because Ho = J .  Moreover, H, is in the Birkhoff-Gustavson normal 
form because it commutes with J ,  i.e. J is a first integral of the perturbed oscillator. 

In section 2 the Hamiltonian pitchfork bifurcation of periodic trajectories of the perturbed 
oscillator is studied against the changes in the parameters U: by using a rotational invariance 
of the perturbed oscillator (cf Kummer 1976). the half line 

~ = { a = ( u ~ , a z ) ~ u ~ = ~ ~ , a ~ ~ o , a ~ > o ) c P  (4) 
is shown to be the Hamiltonian pitchfork bifurcation set 

Section 3 sets up the Maslov quantization. Since H, and J commute, the perturbed 
oscillator is a completely integrable Hamiltonian system, so that the Maslov quantization is 
applicable to it. The first integrals He and J determine smooth level sets 

M , ( h , E ) = ( ( p , q ) ~ R 2 X R 2 1 J ( p , ~ ) = h , H , ( p , q ) = h + h Z E }  (5) 
with h and E chosen suitably, which are shown to be diffeomorphic (i.e. in smooth o n e  
to-one correspondence) either to a single two-dimensional torus or to a pair of mutually 
disjoint tori. On each invariant torus a-pair of topologically independent non-contractible 
loops are found. Note that a family of invariant ton stratifies an open-dense domain in 
R2 x R2. 

In section 4 the Maslov quantization condition is estimated on the loops obtained in 
section 3. Since the Maslov quantization condition is composed of the action integral and 
the Maslov index of the loops, this section accordingly is divided in two. In the first part 
the Maslov indices are calculated, and in the second part the action integrals are shown to 
be written in terms of certain area integrals. 

In section 5 the a-dependence of the degeneracy of energy levels for the Maslov- 
quantized oscillator is analysed qualitatively by an extensive use of the results obtained 
in section 4. It tums out that the Hamiltonian pitchfork bifurcation set B given in (4) 
for periodic trajectories is identical with the classical limit of a ‘bifurcation set’ for the 
degeneracy of energy levels in quantum theory. 

Section 6 contains the concluding remarks. The energy level behaviour against the 
changes in a for the Maslov-quantized oscillator discussed in this paper is compared with 
that for a quantized oscillator obtained through Robnik‘s scheme (Robnik 1984): indeed, 
on computing numerically the energy levels for the ‘Robnik-quantized‘ oscillator, their 
behaviour against the changes in a agrees with that for the Maslov-quantized oscillator 
studied in this paper. Further, the bifurcation in the perturbed oscillator studied in this 
paper is contrasted with a bifurcation  in^ the one-dimensional oscillator with a double-well 
potential. 

Part of this work has been reported in the paper (Uwano 1994) without detailed proof. 
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2. Hamiltonian pitchfork bifurcation 

Let us recall that the harmonic oscillator Hamiltonian J is a first integral for the perturbed 
oscillator. Hence, every trajectory of the perturbed oscillator is confined on level sets 
J-'(h) = [ (q ,  p )  E Rz x R21J(q, p )  = h (> O)]. Further, the oneparameter canonical 
transformation generated by J is a rotation on R2 x Rz, 

cost -sint ( sint cost ) (6) 
(q, p )  E R2 x R2 w (R(t)q, R(t )p)  E R2 x RZ with ~ ( t )  = 

which leaves the Hamiltonian Ha of the perturbed oscillator invariant. Therefore we can 
reduce the perturbed oscillator to a lower-dimensional system as follows: since the rotation 
(6) acts~on every J-'(h) without fixed points, a smooth quotient space of J-'(h) is formed 
by factoring out the rotation. In fact, since the Lj given by (B) are invariant under the 
rotation, and since L: +L: + L: = hZ for (4, p )  E J-'(h),  the Kustaanheimdtiefel (KS) 
transformation 

1 
x = i; (Li(q, P). L d q ,  PI, p ) )  E R3 (7) 

defines the projection r~, of J-'(h) to the quotient space S2; XJ, : J-'(h) + S2. The S2 is 
what is called a reduced phase space. 

In association with the projection r r ~ ,  the Hamiltonian equation for the perturbed 
oscillator is reduced to a Hamiltonian equation on the reduced phase space Sz, which 
is put in an 'Euler-like' equation, 

dx - = -2hx xgradHgt  
dt (8) 

where x denotes the vector product (cf Kummer 1976), and 17:; s&ds for the reduced 
Hamiltonian induced from Ha, 

(9) 
Thus the perturbed oscillator is reduced to the Hamiltonian dynamical system on Sz. 

The reduction procedure provides us with the following crucial fact (Kummer 1976, 
Cushman and Rod 1982): 

Fact 2.1. For every equilibrium point of the reduced Hamiltonian equation (8) there exists on 
J-'(h) a unique periodic trajectory of the perturbed 1:l resonant oscillator, which projects 
to the equilibrium point through nh. Both such a periodic trajectory and its associated 
equilibrium point share the same stability character. 

A bifurcation problem of periodic trajectories allowed to exist by fact 2.1 is then reduced 
to that of the equilibrium points of the reduced Hamiltonian equation (8). From (8) it 
follows that all the equilibrium points of (8) are given by the critical points of HZ;. A 
straightforward calculation then provides all the equilibrium points as follows: 

(x E S2 c R 3 )  

HE; = ~ h  + alh2x3 + fazh2x:. 

if (YI >a2 

The stability character of these equilibrium points are observed from the Hessian of H$ 
at the respective points. A calculation results in figure 1, which describes the bifkcation 
diagram for the equilibrium points (e.p.'s) listed in (10). The full lines stand for the e.p.'s 



a1 
> 

Figure 1. The Hamiltonian pitchfork bifurcation for the e.p.'s of equation (8). 

with elliptic stability character, and the broken line for the e.p. with hyperbolic character. 
Figure 1 shows that the e+ exhibits a Hamiltonian pitchfork bifurcation (cf Marsden 1992) 
as a2 passes through the value al. Hence, fact 2.1 implies the following. 

Proposition 2.2. For periodic trajectories of the perturbed oscillator allowed to exist by fact 
2.1, a Hamiltonian pitchfork bifurcation occurs as a E 7J passes across the bifurcation set 
J3 defined by (4). 

3. Invariant tori 

Since t!!e perturbed oscillator is a completely integrable Hamiltonian system the Liouville- 
Arnold theorem (Arnold 1978) implies that the level sets M,(h, E )  already defined by 
(5) form a family of invariant ton. However, in order that H, and J are functionally 
independent we have to restrict R2 x R2 to the open-dense subset 

I(q. p )  E R2 x R21J2 # (Ld21 if a1 >a2 

[ ( q , p ) ~ R ~ x R ~ l J ~ # ( L ~ ) ~ ~ o r H ~ #  J + O C ~ J ~ ]  if a! .e CUZ. 

We wish to show that every smooth M,(h, E )  is indeed diffeomorphic (i.e. in a smooth 
one-to-one correspondence) either to a two-dimensional torus T 2  or to a pair of T 2 .  A 
key is the fact that the J-'(h) is made into an S' fibre bundle (Schutz 1980) over S2, 
rrh : J-' (h) + Sz. The J-'(h) is not the direct product space 9 x S' topologically, but 
the subset, u h  = [(q. p )  I L3(q, p )  # -h] ,  of J-'(h) admits the direct product structure, 

.=( (11) 

u h  = ((4, p )  I h ( q 9  p )  # -h1 E S' n h ( u h )  with n h ( u h )  = [ x  E S2 1x3 # -11 (12) 

where S' denotes the circle group of the rotation (6). In fact, we can realize (12) by the 
mapping (cf Uwano 1989), 

( p ( l ) , X )  E s' x nk(uh) e z/il(R(t)e(x), R(t)P(X))  E uk ~ (t  E [0,k1) (134 

where 

Since the level set M,(h. E )  within the subset 0, (Il), is contained in U,, equation (12) 
implies that Mu@, E )  is viewed topologically as SI x ( x  E S2 I H z i ( x )  = h + h 2 E ] ,  where 
( x  E S2 I Ha5(x)  = h + h2E)  denotes the level curve of the reduced Hamiltonian H$. 
Hence we obtain 

Mu@, E )  2 S' X xk(Me(h, E ) )  s1 X { X  E s2 I H$(x) = h 4- h 2 E ] .  (14) 
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Thus the topology of M,(h, E )  is determined, depending on the level curve [ x  E 
S21Ha5 = h + h2E). To look into the level curves it is convenient to introduce the local 
coordinates (5,  7) in S2\{(0, 0, -1)) by 

x = (25 %/-, 2 q J W .  1 - 2 0 2  + 72)) (150) 

with the constraint 

5 2  + 172 < 1 (154 
which were used efficiently in Kummer (1976). In terms of (5, q) the equation HE: = 
h + h2E is put in the form 

so that the level curve { x  E S2 I HZi = h + h 2 E )  is mapped to the curve ( ( 5 , ~ )  le2 = 
F(q) ,  t2 + q2 < 1) through the smooth mapping 

determined by (IS). Therefore classifying the topology of (x E S2 1 Ha$ = h + h 2 E )  
amounts to classifying the topology of ~ ( { x  E S2 I H$ = h + h2E) )  = {($, q) It2 = 
F ( q ) ,  t2 + q2 < 11 in the (6, +plane determined by (16). We note here that, in order for 
equation (16) to determine a non-empty set, the E is required to satisfy 

-011 < E < 011 for 011 > 012 

By evaluating (16) along with (18), we have the following, 

Lemma 3.1. The non-empty smooth level curves, [ x  E S2 I HE: = ~ h  +h2E) ,  are diffeomor- 
phic to one of the following: 

for 011 2 @z,~ 
{ x  E S2 I Hc: = h + h 2 E )  2 S' if -011 < E < 011; (19a) 

for 011 c 012, 

Here S' @ S' denotes the disjoint union of two circles, one of which is in the region in S2 
determined by x2 t 0, and the other in the region with xz c 0. 

From (14) and (19) we have the following: 

Proposition 3.2. The non-empty smooth level sets M.(h, E )  are diffeomorphic to one of 
the following: 

for 011 2 012, 

M.(h, E )  E T2 if -011 < E < 0 1 l ;  
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for a, < rr2, 

if 

where T 2  E S’ x SI. One T 2  of the disjoint union T2 @ T 2  is in the region 

We wish here to mention what happens in the case of E = al with (YI < az, which is 
listed in neither (19b) nor (206). In this case it happens that L&, p )  = h, and the level 
curve [ x  E S2 I HE: = h + h2E)  looks like a ygure of eight’, which consists of two circles 
glued at a point. Part of the figure of eight is viewed topologically as a circle, 

(214 

Then M,(h,al) takes the form of S’ x ygureofeight’. Since the M.(h,orl) may 
be viewed as a limit of T2 fB TZ given in @Ob), M,(h,al) n { L z ( q , p )  > 0) and 
M,(h, q) n [Lz(q ,  p )  < 0) will be referred to also as ‘invariant tori’, 

M d h ,  mi) n I M q ,  P) > 01 (21b) 

((4. P) I M 4 ,  P) > 0). and the other in ((4, P) I M q .  P) < 01. 

[HE: = h fh’al] n ( x 2  > 0)  G (HE: = h + h2011]n [ X Z  < 0)  G S’. 

M d h ,  ai) n (Lzk .  P) < 01 Z-T2 
which will play a critical role in the following sections. 

The above discussion also provides a pair of topologically independent non-contractible 
loops of the invariant tori. One of the non-contractible loops is, of course, the factor space, 
SI, coming from the rotation (6). The other loop comes from the level curves (19). 
Proposition 3.3. For a given invariant’torus one of the non-contractible loops is realized as 
the orbit in T 2  generated by the rotation (6): on choosing a point, say (ij, i;) in T2,  the 
loop, denoted by dl), is given by 

(22) 
Note that the point (ij, i;) can be chosen arbitrarily as long as it belongs to the invariant 

c(I) = ((4, p )  E T2l(q, p )  = (R( t ) i j ,  R W F ) ,  t E ro, 2nll. 

torus under consideration. The loop c(I) will be referred to as a ‘type-I loop’ henceforth. 
Proposition 3.4. Another non-conkactible loop, denoted by d2), is given by 

c@) = ( (4 .  P) E T 2  I (q,  P) = 4ceo,  P(X))> x E Jrh(T2)) (23) 
where Q ( x )  and P ( x )  are defined by (13b). and the projection xh by (7). The nh(T2) of 
T 2  is either of the loops listed in (19). The loop c(’) will be referred to as the ‘type-II loop’ 
henceforth. 
Remark. In the case of the ‘singular’ invariant tori, (Zlb), propositions 3.3 and 3.4 also 
hold true. 

4. The Maslov quantization condition 

So far we have found the pair of topologically independent non-contractible loops in the 
invariant tori. We are now in a position to estimate the h4kslov quantization condition for 
the perturbed oscillator. Note here that the Maslov quantization is also referred to as the 
torus quantization or as the EBK (Einstein-Brillouin-Keller) quantization (Gutzwiller 1993). 
According to the Maslov quantization condition (Abraham and Marsden 1978) an invariant 
torus is Maslov quantizable if the integral condition 

i p T d g  - $M(c)  = an integer (E = (Planck‘s constant)/Zn) (W 
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is valid for evzry (smooth) loop c in the invariant torus. The  first^ term in the left-hand side 
of (24) is the action integral and the second is one quarter of the Maslov index. In practice, 
owing to Stokes’ theorem (Schutz 1980), we have only to check (24) for the pair of non- 
contractible loops c(I) and c(’) (see (22) and (23)). We note here that in Weinstein (1974) the 
Maslov quantizable invariant ton are introduced as those which represent ‘quasi-classical 
states’ of a given Hamiltonian system. 

4.1. The Maslov indices 

The complete integrability of our perturbed oscillator enables us to describe the Maslov 
indices in the form of line integral using H, and J (Arnold 1963, Yoshioka 1986). The 
calculation of the integral (appendix A) provides the following: 

Lemma4.1. For the loops c(’) and cp), given by (22) and (23), the Maslov indices are 
calculated. except for the case E = a1 with 011 < 012, to be 

M(c‘’’) = 4 and M(C“’) = -2. (25) 

Remark. As is pointed out in section 3, the ton M,(h,crl) n ( L 2 ( q , p )  > 0) and 
M,(h,nl) n ( L z ( q , p )  < 0) have singularities for E = ax, so that the Maslov indices 
for the loops c(’) and d2) for these tori are not defined well. However, since we wish to 
deal with these ‘singular’ invariant tori together with the regular ones, we will try later to 
associate Maslov indices to these singular loops. 

4.2. The action integrals 

We compute the action integral in the following. For this purpose we put p’ dq into the 
form 

p‘dq = $(pr  dq - qTdp)  + d (fp’q) . (26) 

Hence Stokes’ theorem (Schutz 1980) shows that 

The use of (27) makes it easy to calculate the action integral. For the type-I loop c(l) 
equation (27) yields the following. 

Lemma 4.2. For the type-I loop $1, given by (22). the action integral is calculated to be 

We turn to the action integral for the type4 loop: 

Lemma 4.3. For the type-I1 loop CO), given by (23). the action integral is put into the form, 

h 
j7fi 

dq = - - Area (8”) 1 

where E@) denotes the loop x ( c @ ) )  (see’(17)) in the (6 ,  q)-plane, and Area(;@)) the area 
of the region enclosed by E(’) oriented counter-clockwise. 
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Proox For cC2) of (23). equation (27) is written as 

In the last equality in (30) Green's theorem is applied with the counter-clockwise orientation 
of E@) taken into account. U 

In view of lemma 4.3 we investigate Area (E@)) in order to estimate the action integral 
for the type-II loop d2). It will then be convenient to label the type-II loops c@) by the 
triple (h, E; a), because of proposition 3.2  if a, < E < (af + a22)/2a2 with 011 < az, the 
invariant tori for (h, E; a) arise in pairs, so that we denote by cy)(h, E; a) and c?(h, E; a) 
the typeu loops for the tori M d h ,  E) n ( W q .  p )  > 0) and Mdh,  E) n { M q ,  p )  < 0), 
respectively. In contrast to this, if -a1 < E < a1 a single type-II loop arises for (h, E; a), 
which will be denoted by c!')(h, E; a), with s indicating 'single'. 

We first calculate Area ( E o )  in the case of E = al. A straightforward calculation yields 
(see appendix B), 

where 0 < arcsin(-) < n/2.-The (31) will be of great help in the succeeding 
discussions because Area(@(h, al; a)) will play a critical role. 

In the case of E # ax the area integrals Area(ELz)(h. E; a)) (U = s, &) are expressed in 
terms of elliptic integrals after calculation (appendix B). Indeed, for $(h, E; a) we have 

dw 

where G(w) is the quartic polynomial, 

and w, (> 0) is the zero of G(w) put in the form 

For the loop E:*)(h. E, a) we have 

(33) 

(34) 

However, it is hard to derive the quantized energy levels E even if we use the expressions 
(32)-(35). Hence, our discussion will centre on the qualitative behaviour of the quantized 
energy levels henceforth. In what follows we present several properties of the area functions 
Area(?,?)@. E ;  a)) (U = s. .t) (see appendix C for their proofs). 
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Lemma 4.4. The loop @ ( h ,  E ;  a) in the (6, q)-plane given as x(ci2)(h, E ;  a)) (see (17)) 
is independent of h, and so is the area integral Area(?$)(h, E ;  a)) (U = s, i). 

- Owing to lemma 4.4 the parameter h is omitted in the area integrals Area(?,n'(E; a)) 
(U = s, &) henceforth. 

Lemma 4.5. Let a be fixed. Then the area integrals Area (@(E; a)) are decreasing 
continuous functions of E as E increases from a1 to (a: + a;) /hz .  

We further obtain a formula from (32): 

Lemma 4.6. In the case of LYI < E < (a: + 4 ) / 2 a ~ ,  with a1 < a2, the area integrals for 
?:)(E; a) and for ??(E; a) are equal, 

A ~ ~ ~ ( E $ Q ( E ;  a)) Area (P(E ;  a)). (36) 

5. The degeneracy of energy levels and its bifurcation set 

In this section we discuss a degeneracy of energy levels for the Maslov-quantized perturbed 
oscillator qualitatively by using the results obtained in section 4. We first mention that the 
Maslov quantization condition (24) for the type-I loop provides quantized values h of J. 
In fact, inserting (25) and (28) into the quantization condition (24) we have the following 
result, which agrees with the usual one for the harmonic oscillator Hamiltonian J. 
Le" 5.1. The value h of the harmonic oscillator Hamiltonian J is'quantized as 

h = h ( N + l )  ( N = 0 , 1 , 2  (... ). (37) 
We consider, in turn, what results from the quantization condition for the typeII loop. 

The first major result comes from lemma 4.6 for a1 < E < (a: + a;)/2a2 with 011 < a2, 
equations (24), (25), (29), and (36) taken together provide the equality 

which implies that if the invariant torus M,(h, E)n[L2(q ,  p )  01 for c f ) (h ,  E ;  a) satisfies 
the Maslov quantization condition, then so does Ma@, E)n(L2(q ,  p )  < 0} for c?(h, E ;  a), 
and vice vena. Put another way, if an energy level E with 01, < E < (a: + a;)/?&* is 
admissible by the Maslov quantization condition, then there exist two different Maslov 
quantizahle invariant ton of the same energy level E. In contrast to this, if -011 < E < al. 
proposition 3.2 ensures that there exists only one Maslov quantizable torus, M,(h, E ) .  To 
summarize, we have the following. 

Proposition 5.2. If an energy level E with 011 < E < (a: + a;)/2az is admissible by the 
Maslov quantization condition (N), it must be doubly degenerate. 

We wish to study the a-dependence of this degeneracy. According to lemma 4.5 the 
Maslov quantization condition for the type-II loop @ ( h ,  E ;  a) is estimated, by using (30) 
and (31), as follows: 

h 4 2 )  1 h 
nh 2tr 

z--Area@* ( a , ; a ) ) f 2 2 - - + ; .  (39) 
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If h is quantized as h = (N + 1)h (N = 0 ,1 , .  . .) (see (37)) the right-hand side of 
(39) becomes - ( h / Z )  + (1/2) = - (N/2 ) ,  so that admissible integers have to be 0 to 
-[(N - 1)/2], where [(N - 1)/2] denotes the integer part of (N - 1)/2. The middle part 
of (39) along with (31) then implies the following. 

Proposition 5.3. Assume that the h is quantized as h = fi(N + 1) (N > 0: a non-negative 
integer). If the inequality 

Area(@(al; aj) + f < -U (40) 

Area(Ef)(E;a))+$ =O,-l, ...,- U (41) 

N + l  -u-l<-- 
z 

holds for U = 0, 1, . . . , [(N - 1)/21, the Maslov quantization condition has to be 
N + l  -- 
R 

so that there exist U+ 1 doubly-degenerate energy levels subject to a1 < E < (a:+a2)/2az. 

Proof If the condition (40) holds, the inequality (39) clearly implies (41). Then there 
exists a unique energy level E which satisfies Area(@(E;a)) = z( j  + $/(N + 1) 
(j = 0, 1 ,  . . . , v), on account of lemma 4.5. Thus, we find v + 1 doubly-degenerate energy 
levels. 

So far we have Maslovquantized regular ton. How could we deal with the singular 
ton (see (21b)) to which the Maslov quantization rule does not apply s’uictly? We wish 
to ‘quantize’ the singular ton in some sense in spite of their singularity: if they were 
not ‘quantizable’, the energy level E = al would become prohibited, and therefore the 
continuity of the energy levels in a would break down. A way to settle this ‘quantization’ 
problem is to think of the singular tori as the limit of the regular tori (see (206)), as E > a1 
tends to a1 (see lemma 4.5). Under this continuity hypothesis we could assume that the 
singular tori share the same Maslov index with the regular ton, i.e. we might have 

M(cp(h ,a l ;  a)) = -2. (42) 
Let us recall the quantization condition (41) for the regular tori. Then, under the above 
hypothesis with lemma 4.5 and (42), a ‘quantization’ condition for the singular tori could 
be 

for U = 0, 1 , .  . . , [i(N - l)]. Hence when the condition (43) is satisfied for E = (YI the 
value E = al could be an admissible doubly-degenerate energy level. The discussion above 
and proposition 5.3 taken together imply the following: 

Theorem 5.4. Assume that h is quantized as h = fi(N + 1) (N: a non-negative integer). 
There exist U + 1 doubly-degenerate energy levels, if the inequality 

- u - 1 < - -  

holds, otherwise no degeneracy occurs. 

Note that if the equality holds in (44) one of U + 1 energy levels corresponds to the 
singular tori, and the remaining U energy levels to regular ton. If the equality does not 
hold, all of U + 1 energy levels are for the regular tori. 

(44) N + l  Area(Cf)(al;a))+ <-U U = 0, 1 ,  ..., [Z(N 1 - I)] z 
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The condition (43) with U = 0 determines when a degenerate energy level takes place 
if h = fi(N + 1) is fixed. In fact, equation (43) with v = 0 is an equation of a1/a2. On 
denoting by T N  the unique solution of (43) with v = 0, the equation ff,/ff2 = rN determines 
a straight line in ?, which will be denoted by e N  henceforth. Since the middle terms of 
(43) can be easily shown to be an increasing function in 011/012, we have the following: 

Lemma 5.5. The degeneracy of energy levels allowed to exist by theorem 5.4 takes place if 
and only if 01 satisfies q / a z  < rN. 

Hence t~ can be thought of as’a ‘bifurcation set’; the degeneracy of energy levels takes 
place or not according to whether 01 lies above or on the line eN, or below the line e N  (see 
figure 2). 

2 

I e N  
I3 

/ N + m ,  
I 

/ 
degeneracy I 

no degeneracy 
/ 

> 0 1  

Figure 2. The bifurcation sec e H  for the degeneracy of energy levels. 

We are to show that the bifurcation set e ,  actually tends to the bifurcation set B (see 
(4)) in classical theory when N + CO for t N .  To this end we need to know the behaviour 
of the bifurcation set e ,  against the non-negative integer N .  Since the solution 01,/012 = r N  
of (43) with v = 0 is the slope of E N ,  it tends to 1 as N tends to infinity, as is easily seen 
from (43). 

Lemma 5.6. As the integer N in (37) tends to infinity the bifurcation set t~ tends to the 
half line B, the Hamiltonian pitchfork bifurcation set in section 2. 

Since the larger N becomes, the larger becomes the value h + h2E of H, on Maslov- 
quantizable invaiant tori (see (5)), the half-line obtained above is understood as the classical 
limit of the bifurcation set for the degeneracy of energy levels in quantum theory. Finally, 
we arrive at the conclusion: 

Conclusion. For the Maslov-quantized perturbed oscillator the Hamiltonian pitchfork 
bifurcation set I3 for the periodic trajectories is the classical limit of the bifurcation set 
LN for the degeneracy of energy levels. 
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6. Concluding remarks 

We wish to make mention of the energy level behaviour against the changes in a2 when al 
is fixed. We assume again that h is quantized a sh  = h ( N +  1 ) .  The energy level behaviour 
against the changes in a:! is neatly investigated by tracing the line {ala, = constant] in P: 
since a1 is now fixed the equality in (44) is thought of as an equation for az. so we denote 
its solution by aiN.”). For notational convenience we introduce = CO and 
aiN*-’) = 0. Since the middle of (44) can be viewed as a decreasing function of az, we see 
that (44) holds if ay”) < a2 < Then, if we start with a2 = 0 and go up along 
the line (ala1 = const], we immediately obtain the following as a corollary of theorem 5.4. 

Corollury. Assume that a1 is fixed and that h = fr(N + 1). The w + 1 quantized energy 
levels are kept doubly-degenerate as far as a1 E aiN,”+’)). 

The energy level behaviour stated in this corollary deserves comparison with the energy 
level behaviour in the ‘Robnik-quantized‘ oscillator. Let Ha be a Hamiltonian operator 
associated with the Hamiltonian H, through Robnik’s scheme (Rob@ 1984, Uwano 1994). 
The eigenvalues of k were computed_ numerically by restricting H, to the eigenspaces of 
the harmonic oscillator Hamiltonian J (vwano 1994). Since the Maslov-quantized energy 
levels are computed on the torus determined by E = (H, - h) /h2  with h = h(N + I), it 
will be better to compare the Maslov-quantized enera  levels with the eigenvalues not of 
the Hamiltonian He itself but of a “halized‘ one, [Ha - ( N +  l ) A ] / ( ( N +  1)h]* restricted 
to the eigenspace of J with the eigenvalue fr(N + 1). In figure 3 the behaviour of the 
eigenvalues computed numerically for the normalized operator is described with a2 varying 
from 0 to 10 and a1 = I (fixed). 

From this and further numerical results, three observations have been made about 
the Robnik-quantized oscillator (Uwano 1994) which are in keeping with proposition 5.2, 
lemma 5.5, and the corollary of theorem 5.4. 

E 

./-- I ____.__--- 
..- //-- .___ ---- 
r-. /--- __-_...__ - --I 

Figure 3. The eigenvalues of [Ee - f i (N + I)l/[?i(N + 1)12. (a) N = 15: (b) N = 25,  
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Observations. 

(1) The eigenvalues exceeding a certain value are all doubly degenerate. 
(2) All degeneracies take place when the inequality a1 < g holds. 
(3) For fixed, once a degeneracy takes place at a certain value of a’, it is maintained as 

a2 increases beyond that value. 

For non-resonant Hami l tonh  in the Birkhoff-Gustavson normal form the Maslov 
scheme obviously provides the same energy levels as the Robnik one does (Robnik 1984). 
However, for resonant Hamiltonians in the normal form l i e  Ha, the agreement in the 
energy level behaviours is not so trivial. The accounting of the agreement in the behaviour 
of energy levels will be a future problem. 

We wish to make another remark about the Hamiltonian pitchfork bifurcation: the one- 
dimensional oscillator with double-well potential is well known as a typical dynamical 
system exhibiting a Hamiltonian pitchfork bifurcation (see Ali and Wood 1989 and 
references therein). The double well potential also gives rise to degenerate energy levels. 
However, there exist several differences between the bifurcations of the double-well 
oscillator and our oscillator: for the double-well oscillator a pitchfork bifurcation occurs at 
the equilibrium points. In contrast with this, in our perturbed oscillator the bifurcation takes 
place at periodic trajectories. Further, since our oscillator has two-degrees of freedom, the 
quantization of it needs the geometry of invariant tori more than the one-dimensional double 
well oscillator. In fact, the reduction procedure seems to be indispensible to drawing the 
conclusion that the relation between the bifurcation sets for periodic trajectories and for the 
degeneracy of energy levels. 

Appendix A. 

Because of the complete integrability of the perturbed oscillator, the Maslov index for a 
loop c is given as follows (Arnold 1963, Yoshioka 1986): let M be the complex-valued 
matrix 

and take the argument arg (det M )  of its determinant. Then the Maslov index for a loop c 
is given by the integral 

M(c) = L$d[wz(det(M))] H (A.2) 

along c. By a straightforward calculation of (A.2) for the type-I loop c(’) we obtain 
M(c(’)) = 4. To show (25) for the typeII loop c(’) we make a further evaluation of 
(A.2). Using equations (2), (7), and (1.5). we can reduce the integral in (A.2) for c(’) to an 
integral along the loop 8’) in the (e, q)-plane 

Hence, examining the behaviour of tan [arg {(at + 2CUzq2)$ + i(-q + crz - 2azq2)q11 we 
obtain M(C(’’) = -2. 0 
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Appendix B. 

We derive (31) first. From equation (16) determining the loop E") for c@) we can write 
down the area integral as 

Area(Zr'(a1; a)) = 21"" m d q  (B.1) 

where F ( q )  is the function in (16), and qM (z 0) the zero of F(q) .  Then the change of 
variable (e ,  q )  = (pcos@, ps inq )  in the right-hand side of (B.1) yields (31). The case 
for $)(a~; a) can be proved in a similar way. 

We proceed to the elliptic integral expression of the area integral: in a manner similar 
to that for deriving (B.l) the area integral for the loop Zf)(E, a) can be written as 

0 

where qm and q~ are the zeros of F ( q )  to be 0 < qm < qM.  The change of variables 

in the right-hand side of (B.2) yields (32x34) for EY)(E,a). The area integral for 
@(E, a) is thus expressed as the elliptic integral form (32). Through a similar calculation 
Area(E?(E, a)) is shown to be expressed as (32x34). For the loop E;*)(E,a) the area 
integral takes the form 

Area(Ey)(E,ry)) = 4 S U m d q  0 (B.4) 

so that through (B.3) it turns out to be expressed as (35). 

Appendix C. 

Since F(q)  is differentiable, its zeros qm, q,+, depend smoothly on E .  Hence the area 
integral expressed as (B.2) is differentiated to satisfy 

d - (Area(8:)(E; a))) i 0. 
dE  

We also obtain (C.l) for E!?(& a) on account of lemma 4.6. Hence the area integral proves 
to be a decreasing function of E. The continuity of the area integral is now obvious because 
of its differentiability. 
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